

San Francisco January 22-24, 2018

Company Showcase: Next Generation Innovations for Buildings

Company Showcase: Next Generation Innovations for Buildings

MODERATED BY YOACHIM HAYNES Analyst, CTG

Company Showcase: Next Generation Innovations for Buildings EXPERT REVIEWERS

CASSIE BOWE Associate Vice President, Energy Impact Partners

ALFRED LAM Vice President, Chrysalix

Company Showcase: Next Generation Innovations for Buildings

DIVYARAJ DESAI Member of the Research Staff in The Energy Systems & Materials Group, PARC **PETER KOZODOY** Founder & CEO, Glint Photonics

MATT MILLER CEO & Chief Engineer, Nativus SERGEY VASYLYEV CEO, Lucent Optics

LANCE WHEELER Research Scientist, National Renewable Energy Laboratory

Company Showcase: Next Generation Innovations for Buildings

DIVYARAJ DESAI Member of the Research Staff in The Energy Systems & Materials Group, PARC

Darc A Xerox Company

70

Electrochemical Systems for Detection and Elimination of Indoor CO₂

WE

246

xn

X+9

316%

PETr

4341

97311

R(++4)=1173,

January 24, 2018

00

Technical Concept

- HVAC comprises 32% of the energy consumed by U.S. buildings. Direct removal of CO_2 reduces overall energy consumption by <u>1%</u>.
- CO₂-selective removal systems could result in greater energy savings than DCV (Mysen et al, Energy & Buildings, 2005).
- CO₂ removal is key to maintaining indoor air quality. Elevated CO₂ concentration affects human activity levels and cognitive function, especially in the key area of strategic thinking (Allen, JG et al, Environ Health Perspect (2016), 124 (6), 805-812)

Electrochemical CO₂ Pump

> Electrochemical CO₂ pump is activated by electrochemical sensor feedback.

> Reversible CO₂ electro-reduction at electrodes to form mobile ion that is transported across the membrane

Exhaust gas is rejected to surroundings, limiting the need for excessive outdoor ventilation.
© 2017 PARC, All rights reserved.
PARC Confidential

Performance Summary

Benchmarks: Sorbents, plants and photobioreactors

High energy consumption (1 MJ/mol) Source: DOI: <u>10.1039/C0EE00064G</u>

Indoor plants

Poor CO2 removal rate Source:Tarran, J et al, Proceedings Of 6 th Internat. Conf. On Indoor Air Quality, Ventilation & Energy Conservation,-Sustainable Built Environment. 2007. Algal Photobioreactors

Need a continuous light source Source: Artveoli microfluidic photobioreactor

- Adsorption air cleaning using CO₂ sorbents is the current state of the art (60% reduction in thermal load). However, sorbents have a high energy consumption (6 kWh/kg CO₂), which erodes the energy impact.
- Plants have been used for indoor CO₂ remediation and reduce HVAC load but have a poor CO₂ removal rate (<0.1 L/h/plant, Torpy et al, Urban Forestry & Urban Greening (2014), 13 (2), 227-233)</p>

Economic Assessment

- Designed to remove 50 L CO₂/h (1 person), and estimated to have an energy consumption of 75 W. Modular stack form factor and operates at a current density >100 mA/cm².
- > Capital costs expected to scale similarly to an fuel cells, equivalent to \$52/occupant.
- > Expected payback period would change based on energy savings/region of installation. We estimate a payback period of <3 years for an electrolyzer for the above scenario.

Metric	Value
Target Indoor gas concentration (ppm)	1,000
Operating temperature	ambient
Specific energy consumption (kJ mol ⁻¹)	100
CO ₂ removal rate (LPH/person)	50
Power consumption (W/person)	60
Energy savings (kWh m ⁻² y ⁻¹)	48
Annual cost savings (\$ m ⁻² y ⁻¹)	0.31
Installed cost (\$/person), no PGM catalyst	52
Simple payback (y)	2.8

Challenges

> Inexpensive catalysts

> Improve system reversibility

> Improve removal rate

Company Showcase: Next Generation Innovations for Buildings

MATT MILLER CEO & Chief Engineer, Nativus

NATIVUS

A Heating & Cooling Technology Platform

CONFIDENTIAL -

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL -

CONFIDENTIAL -

CONFIDENTIAL -

CONFIDENTIAL -

CONFIDENTIAL - CONFIDENTIAL - CONFIDENTIAL - CONFIDENTIAL

nativuspower.com

ARCHITECTURAL REDESIGN

Based on a patented heat exchanger platform that is 10x more efficient than current technology.

 \bigcirc

Air-Conditioner

Boundary Layer Sheared Away Via Centrifugal Force

System Operates Standard Vapor-Compression Cycle

Completely Sealed Refrigerant System

2

*Energy Efficiency initial estimates based upon initial calculations, materials and components selected for manufacturing.

"World's Hottest Market: Air Conditioners For India And Hundreds Of New Electric Plants To Power Them" - Forbes, May 2017

6

ALAMEN

Mira

पार्टील ज्यस सेंटर ।

CENTRE

ធព្រក

© 2018 Nativ

Global HVAC Energy Demand

17

9

11-

1. EIA. Assumes \$.15 kWh Global COE Average.

.......

6

Stationary 'Finned Tube + Fan' Heat Exchanger

We are long overdue for a system redesign...

In the foreground, a Finned-Tube Heat Exchanger (radiator) installed on an early car over a century ago.

2018 Nativus. Patent Pending. Proprietary and Confidential.

Problem: Poor Heat Exchange¹

The Boundary Layer

Heat Exchanger Fins

CRYO Air-Conditioner Precision Climate-Control

NATIVUS

Matt Miller | CEO matt@nativuspower.com | 775.537.4611

Company Showcase: Next Generation Innovations for Buildings

LANCE WHEELER Research Scientist, National Renewable Energy Laboratory

Switch**Glaze**

Good window OR Good solar panel: Why not both?

The value of SwitchGlaze

Commercial

Solar Mitigation \$3.90 / ft² / year

Solar Conversion \$2.38 / ft² / year

Efficiency higher than *any* existing technology Drop-in (no destruction) retrofit

1-4 year ROI

Incremental cost of SwitchGlaze

Roll-to-roll printing technology

Cost of a SwitchGlaze window

Bailie, C. et al. Preliminary Technoeconomic Analysis of Single-Junction Perovskites and Perovskites-on-Silicon. in (2015).

Proof of Concept

- Multiple Non-prov. patents filed
- Large NREL portfolio

Investment needs:

- Research on Improved durability
- Scaling

Demo Installation

Switch**Glaze**