Battery Technology Show Recap: Emerging Battery Technology

Contributions from: Pirmin Ulmann, co-founder and CEO at b-science.net

Last month, I was fortunate enough moderate a session at the Battery Technology Show in London. Here are takeaways from that session as well as some additional insight from our own research.

Delegates from across the battery industrial supply chain participated in discussions around the technologies and business model innovations that could disrupt their markets in the next few years. Speakers included topic experts like Billy Wu, a senior lecturer at the Dyson School of Engineering at Imperial Collage, and Pirmin Ulmannm, co-founder and CEO of b-science, an energy storage patent search and monitoring company.

Coming away from the event, I had the feeling that industry consensus is that the liquid electrolytes battery market share will rapidly drop due to the advent of a newer battery. The difference in views was the timing to commercial availability.

Liquid lithium-ion performance has iteratively increased since its commercial introduction in 1991. Only in the last few years have major technological advancements, driven by large R&D funding, reached a tipping point of alternative battery chemistries. Venture capital has taken notice and increased investment activity over the past 24 months in solid-state, ultracapacitors and redox flow batteries, as well as driven a resurgence of investment into chemistries including zinc, sulfur and lead (shown in Figure 1).

The panelists also provided insight into where some of these technologies stand today.

Figure 1 shows the investment trends across emerging battery technologies

Solid-state batteries

As the name implies, solid-state batteries utilize a solid material to enable transport of lithium-ions in a battery. Solid-state batteries previously fell short of expectations due to lack of a suitable candidate materials for the electrolyte. Recent incremental gains at lab level have led to various successful pilot projects. The panelists explained that while Li-ion batteries with liquid electrolytes are the standard today, a solid electrolyte is non-volatile, making solid-state batteries inherently safer. They also have much higher energy density.

Figure 2 shows a solid-state battery system

In February 2018, automotive OEMs including Renault, Nissan, Mitsubishi and also Dyson collectively invested $65 million in solid-state battery startup Ionic Materials. Solid Power also raised $20 million in preparation for a 2019 production facility and has prepared for maintainable growth with a set of strategic partners. QuantumScape received $100 million from Volkswagen in June, which took the company to early “unicorn” status, despite not having evidence of a commercialized product.

The panel summarized that solid-state batteries maybe be over-hyped, and they will watch for under-performing technological gains, creating opportunities for alternative approaches to solid-state batteries even after wide-scale deployment. A recent example can be seen with Dyson’s acquisition of solid-state battery developer Sakti3 for $90 million a few years ago. The technology was planned for use in their electric car due for release in 2020. However, since the acquisition, the company has experienced a range of setbacks due to ongoing commercialization challenges, resulting in Dyson writing down the subsidiary’s value by $58 million.

Current trends for long-duration storage

Supercapacitors, otherwise known as ultracapacitors, were one of the promising technologies discussed. They offer much higher cycling stability (millions of cycles), compared Li-ion batteries at the expense of lower energy density. One discussion centered on the possible integration of both supercapacitors and solid-state batteries. In a combined solid-state battery/supercapacitor system, weaknesses in longevity and peak power performance of the solid-state battery can be compensated by the supercapacitor.

Graphene derivatives and carbon nanotubes can improve the performance of supercapacitors and are increasingly being used at production scale. Early market player Skeleton Technologies is a manufacturer of graphene ultracapacitors, ramping up production to bring graphene ultracapacitors from high-end sectors to the mass market, while moving higher up the value chain with turnkey energy storage solutions.

Sulfur in Li-ion batteries

Lithium-sulfur was discussed as a promising battery technology with recent substantial R&D activity by key industry players. Because of its high energy density and availability, sulfur could potentially replace cobalt, nickel and manganese for use in the cathode.

Previously, the weakness of lithium-sulfur batteries was related to cycle stability. These issues have been overcome with the help of novel materials, leading to commercialization within niche markets such as in satellites that require high energy density on a mass basis. As a result, several players who have been around for a while are seeing a resurgence in market growth. For example, Oxis Energy  for the first time in six years, received a first portion of equity funding in 2018.

Commercialization timing

Hopes for commercialization in under five years in many cases seems over optimistic. But with an increasing trend of substantial late-stage rounds appearing within the sectors we cover over the last few years, it wouldn’t be surprising to see a few more major investments cropping up within the emerging battery technology space in the next 12 months to help with the commercialization valley of death.

Be sure to keep an eye out for any new battery emerging technologies activity on our i3 platform.